August 17, 2022

Healty

Slick Healthy

From Mendel to quantitative genetics in the genome era: the

  • Fisher, R. A. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb. 53, 399–433 (1918).

    Google Scholar 

  • Provine, W. B. The Origins of Theoretical Population Genetics (University of Chicago Press, 1971).

  • Blixt, S. Why didn’t Gregor Mendel find linkage? Nature 256, 206 (1975).

    CAS 
    PubMed 

    Google Scholar 

  • Fairbanks, D. J. & Rytting, B. Mendelian controversies: a botanical and historical review. Am. J. Bot. 88, 737–752 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Robbins, R. B. Some applications of mathematics to breeding problems III. Genetics 3, 375–389 (1918).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lewontin, R. C. & Kojima, K. The evolutionary dynamics of complex polymorphisms. Evolution 14, 458–472 (1960).

    Google Scholar 

  • Hill, W. G. & Robertson, A. Linkage disequilibrium in finite populations. Theor. Appl Genet 38, 226–231 (1968).

    CAS 
    PubMed 

    Google Scholar 

  • Sved, J. A. & Hill, W. G. One hundred years of linkage disequilibrium. Genetics 209, 629–636 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hill, W. G. & Robertson, A. The effect of linkage on limits to artificial selection. Genet Res 8, 269–294 (1966).

    CAS 
    PubMed 

    Google Scholar 

  • Lande, R. & Thompson, R. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124, 743–756 (1990).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weir, B. S. & Hill, W. G. Effect of mating structure on variation in linkage disequilibrium. Genetics 95, 477–488 (1980).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hill, W. G. & Weir, B. S. Variances and covariances of squared linkage disequilibria in finite populations. Theor. Popul Biol. 33, 54–78 (1988).

    CAS 
    PubMed 

    Google Scholar 

  • Hill, W. G. Estimation of linkage disequilibrium in randomly mating populations. Heredity 33, 229–239 (1974).

    CAS 
    PubMed 

    Google Scholar 

  • Excoffier, L. & Slatkin, M. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol. Biol. Evol. 12, 921–927 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Morton, N. E. et al. The optimal measure of allelic association. Proc. Natl Acad. Sci. USA 98, 5217–5221 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Felsenstein, J. The evolutionary advantage of recombination. Genetics 78, 737–756 (1974).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Charlesworth, B., Betancourt, A. J., Kaiser, V. B. & Gordo, I. Genetic recombination and molecular evolution. Cold Spring Harb. Symp. Quant. Biol. 74, 177–186 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Hill, W. G. Variation in genetic identity within kinships. Heredity 71, 652–653 (1993).

    Google Scholar 

  • Avery, P. J. & Hill, W. G. Variability in genetic parameters among small populations. Genet. Res. 29, 193–213 (1977).

    CAS 
    PubMed 

    Google Scholar 

  • Weir, B. S., Avery, P. J. & Hill, W. G. Effect of mating structure on variation in inbreeding. Theor. Popul. Biol. 18, 396–429 (1980).

    Google Scholar 

  • Hill, W. G. & Weir, B. S. Variation in actual relationship as a consequence of Mendelian sampling and linkage. Genet Res (Camb.) 93, 47–64 (2011).

    CAS 

    Google Scholar 

  • Hill, W. G. & White, I. M. S. Identification of pedigree relationship from genome sharing. G3-Genes Genomes Genet. 3, 1553–1571 (2013).

    Google Scholar 

  • Hill, W. G. & Weir, B. S. Variation in actual relationship among descendants of inbred individuals. Genet. Res. 94, 267–274 (2012).

    CAS 

    Google Scholar 

  • Falconer, D. S. Introduction to Quantitative Genetics (Oliver and Boyd, 1960).

  • Hivert, V., Wray, N. R. & Visscher, P. M. Gene action, genetic variation, and GWAS: a user-friendly web tool. PLoS Genet. 17, e1009548 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer, 1998).

    Google Scholar 

  • Charlesworth, D. & Willis, J. H. The genetics of inbreeding depression. Nat. Rev. Genet. 10, 783–796 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Robertson, A. & Hill, W. G. Population and quantitative genetics of many linked loci in finite populations. Proc. R. Soc. Ser. B Biol. Sci. 219, 253–264 (1983).

    Google Scholar 

  • Mukai, T., Cardellino, R. A., Watanabe, T. K. & Crow, J. F. The genetic variance for viability and its components in a local population of Drosophila melanogaster. Genetics 78, 1195–1208 (1974).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Joshi, P. K. et al. Directional dominance on stature and cognition in diverse human populations. Nature 523, 459–462 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yengo, L. et al. Detection and quantification of inbreeding depression for complex traits from SNP data. Proc. Natl Acad. Sci. USA 114, 8602–8607 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clark, D. W. et al. Associations of autozygosity with a broad range of human phenotypes. Nat. Commun. 10, 4957 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hill, W. G., Goddard, M. E. & Visscher, P. M. Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet. 4, e1000008 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Maki-Tanila, A. & Hill, W. G. Influence of gene interaction on complex trait variation with multilocus models. Genetics 198, 355–367 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Keightley, P. D. Models of quantitative variation of flux in metabolic pathways. Genetics 121, 869–876 (1989).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Charlesworth, B. Causes of natural variation in fitness: evidence from studies of Drosophila populations. Proc. Natl Acad. Sci. USA 112, 1662–1669 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Polderman, T. J. et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 47, 702–709 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet 101, 5–22 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, Z. et al. Dominance genetic variation contributes little to the missing heritability for human complex traits. Am. J. Hum. Genet 96, 377–385 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hivert, V. et al. Estimation of non-additive genetic variance in human complex traits from a large sample of unrelated individuals. Am. J. Hum. Genet 108, 786–798 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pazokitoroudi, A., Chiu, A. M., Burch, K. S., Pasaniuc, B. & Sankararaman, S. Quantifying the contribution of dominance deviation effects to complex trait variation in biobank-scale data. Am. J. Hum. Genet 108, 799–808 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bloom, J. S. et al. Genetic interactions contribute less than additive effects to quantitative trait variation in yeast. Nat. Commun. 6, 8712 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Bloom, J. S., Ehrenreich, I. M., Loo, W. T., Lite, T. L. & Kruglyak, L. Finding the sources of missing heritability in a yeast cross. Nature 494, 234–237 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, X. S. & Hill, W. G. Genetic variability under mutation selection balance. Trends Ecol. Evol. 20, 468–470 (2005).

    PubMed 

    Google Scholar 

  • Hill, W. G. Predictions of response to artificial selection from new mutations. Genet. Res. 40, 255–278 (1982).

    PubMed 

    Google Scholar 

  • Hill, W. G. Rates of change in quantitative traits from fixation of new mutations. Proc. Natl Acad. Sci. USA 79, 142–145 (1982).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hill, W. G. Understanding and using quantitative genetic variation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 73–85 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hill, W. G. & Kirkpatrick, M. What animal breeding has taught us about evolution. Annu. Rev. Ecol. Evol. Syst. 41, 1–19 (2010).

    Google Scholar 

  • Wray, N. R., Kemper, K. E., Hayes, B. J., Goddard, M. E. & Visscher, P. M. Complex trait prediction from genome data: contrasting EBV in livestock to PRS in humans: genomic prediction. Genetics 211, 1131–1141 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hill, W. G. Prediction and evaluation of response to selection with overlapping generations. Anim. Prod. 18, 117–139 (1974).

    Google Scholar 

  • Sales, J. & Hill, W. G. Effect of sampling errors on efficiency of selection indexes. 1. Use of information from relatives for single trait improvement. Anim. Prod. 22, 1–17 (1976).

    Google Scholar 

  • Sales, J. & Hill, W. G. Effect of sampling errors on efficiency of selection indexes. 2. Use of information on associated traits for improvement of a single important trait. Anim. Prod. 23, 1–14 (1976).

    Google Scholar 

  • Hayes, J. F. & Hill, W. G. Modification of estimates of parameters in the construction of genetic selection indexes (bending). Biometrics 37, 483–493 (1981).

    Google Scholar 

  • de Vlaming, R. et al. Multivariate analysis reveals shared genetic architecture of brain morphology and human behavior. Commun. Biol. 4, 1180 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hill, W. G. & Nicholas, F. W. Estimation of heritability by both regression of offspring on parent and intra-class correlation of sibs in one experiment. Biometrics 30, 447–468 (1974).

    CAS 
    PubMed 

    Google Scholar 

  • Patterson, H. D. & Thompson, R. Recovery of interblock information when block sizes are unequal. Biometrika 58, 545–554 (1971).

    Google Scholar 

  • Visscher, P. M., Thompson, R. & Hill, W. G. Estimation of genetic and environmental variances for fat yield in individual herds and an investigation into heterogeneity of variance between herds. Livest. Prod. Sci. 28, 273–290 (1991).

    Google Scholar 

  • Meyer, K. Maximum likelihood procedures for estimating genetic parameters for later lactations of dairy cattle. J. Dairy Sci. 66, 1988–1997 (1983).

    Google Scholar 

  • Meyer, K. & Hill, W. G. Mixed model analysis of a selection experiment for food intake in mice. Genetical Res. 57, 71–81 (1991).

    CAS 

    Google Scholar 

  • Keightley, P. D. & Hill, W. G. Quantitative genetic-variation in body size of mice from new mutations. Genetics 131, 693–700 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kruuk, L. E. Estimating genetic parameters in natural populations using the ‘animal model’. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 873–890 (2004).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Visscher, P. M., Haley, C. S., Heath, S. C., Muir, W. J. & Blackwood, D. H. Detecting QTLs for uni- and bipolar disorder using a variance component method. Psychiatr. Genet 9, 75–84 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brotherstone, S. & Hill, W. G. Heterogeneity of variance amongst herds for milk production. Anim. Prod. 42, 297–303 (1986).

    Google Scholar 

  • Hill, W. G., Edwards, M. R., Ahmed, M. K. A. & Thompson, R. Heritability of milk yield and composition at different levels and variability of production. Anim. Prod. 36, 59–68 (1983).

    Google Scholar 

  • Hill, W. G. On Selection among groups with heterogeneous variance. Anim. Prod. 39, 473–477 (1984).

    Google Scholar 

  • Hill, W. G. & Mulder, H. A. Genetic analysis of environmental variation. Genet. Res. 92, 381–395 (2010).

    Google Scholar 

  • Mulder, H. A., Bijma, P. & Hill, W. G. Prediction of breeding values and selection responses with genetic heterogeneity of environmental variance. Genetics 175, 1895–1910 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Young, A. I., Wauthier, F. L. & Donnelly, P. Identifying loci affecting trait variability and detecting interactions in genome-wide association studies. Nat. Genet. 50, 1608–1614 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Yang, J. et al. FTO genotype is associated with phenotypic variability of body mass index. Nature 490, 267–272 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kirkpatrick, M., Hill, W. G. & Thompson, R. Estimating the covariance structure of traits during growth and aging, illustrated with lactation in dairy cattle. Genetical Res. 64, 57–69 (1994).

    CAS 

    Google Scholar 

  • Meyer, K. & Hill, W. G. Estimation of genetic and phenotypic covariance functions for longitudinal or ‘repeated’ records by restricted maximum likelihood. Livest. Prod. Sci. 47, 185–200 (1997).

    Google Scholar 

  • Wilson, A. J., Kruuk, L. E. & Coltman, D. W. Ontogenetic patterns in heritable variation for body size: using random regression models in a wild ungulate population. Am. Nat. 166, E177–E192 (2005).

    PubMed 

    Google Scholar 

  • Ni, G. et al. Genotype-covariate correlation and interaction disentangled by a whole-genome multivariate reaction norm model. Nat. Commun. 10, 2239 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Walsh, B. & Lynch, M. Evolution and Selection of Quantitative Traits (Oxford University Press, 2018).