August 8, 2022

Healty

Slick Healthy

The evolution of cheating in viruses

  • West, S. A., Griffin, A. S. & Gardner, A. Evolutionary explanations for cooperation. Curr. Biol. 17, R661–R672 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Bourke, A. F. G. Principles of Social Evolution (Oxford University Press, 2011).

  • Davies, N. B., Krebs, J. R. & West, S. A. An Introduction to Behavioural Ecology (John Wiley & Sons, 2012).

  • West, S. A., Griffin, A. S. & Gardner, A. Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. J. Evol. Biol. 20, 415–432 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Ghoul, M., Griffin, A. S. & West, S. A. Toward an evolutionary definition of cheating. Evolution 68, 318–331 (2013).

    PubMed 

    Google Scholar 

  • Jones, E. I. et al. Cheaters must prosper: reconciling theoretical and empirical perspectives on cheating in mutualism. Ecol. Lett. 18, 1270–1284 (2015).

    PubMed 

    Google Scholar 

  • Andersen, S. B., Marvig, R. L., Molin, S., Krogh Johansen, H. & Griffin, A. S. Long-term social dynamics drive loss of function in pathogenic bacteria. Proc. Natl Acad. Sci. USA 112, 10756–10761 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Griffin, A. S., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430, 1024–1027 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Flower, T. Fork-tailed drongos use deceptive mimicked alarm calls to steal food. Proc. R. Soc. B Biol. Sci. 278, 1548–1555 (2011).

    Google Scholar 

  • Frederickson, M. E. Mutualisms are not on the verge of breakdown. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2017.07.001 (2017).

  • Jandér, K. C. & Herre, E. A. Host sanctions and pollinator cheating in the fig tree–fig wasp mutualism. Proc. R. Soc. B Biol. Sci. 277, 1481–1488 (2010).

    Google Scholar 

  • Ostrowski, E. A. et al. Genomic signatures of cooperation and conflict in the social amoeba. Curr. Biol. 25, 1661–1665 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hamilton, W. D. The genetical evolution of social behaviour. J. Theor. Biol. 7, 1–16 (1964).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • West, S. A., Cooper, G. A., Ghoul, M. B. & Griffin, A. S. Ten recent insights for our understanding of cooperation. Nat. Ecol. Evol. 1–12, https://doi.org/10.1038/s41559-020-01384-x (2021).

  • Kirkwood, T. B. & Bangham, C. R. Cycles, chaos, and evolution in virus cultures: a model of defective interfering particles. Proc. Natl Acad. Sci. USA 91, 8685–8689 (1994).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frank, S. A. Within-host spatial dynamics of viruses and defective interfering particles. J. Theor. Biol. 206, 279–290 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4, 597–607 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Kramer, J., Özkaya, Ö. & Kümmerli, R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 1–12, https://doi.org/10.1038/s41579-019-0284-4 (2019).

  • Gano-Cohen, K. A. et al. Recurrent mutualism breakdown events in a legume rhizobia metapopulation. Proc. R. Soc. B Biol. Sci. 287, 20192549 (2020).

    CAS 

    Google Scholar 

  • Cordero, O. X., Ventouras, L.-A., DeLong, E. F. & Polz, M. F. Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations. Proc. Natl Acad. Sci. USA 109, 20059–20064 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davies, N. B. Cuckoos, Cowbirds and Other Cheats (T & AD Poyser, 2010).

  • Meir, M. et al. Competition between social cheater viruses is driven by mechanistically different cheating strategies. Sci. Adv. 6, eabb7990 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shirogane, Y. et al. Experimental and mathematical insights on the interactions between poliovirus and a defective interfering genome. PLOS Pathogens. 17, e1009277 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vignuzzi, M. & López, C. B. Defective viral genomes are key drivers of the virus–host interaction. Nat. Microbiol. 1, https://doi.org/10.1038/s41564-019-0465-y (2019).

  • Roux, L., Simon, A. E. & Holland, J. J. In Advances In Virus Research (eds Maramorosch, K., Murphy, F. A. & Shatkin, A. J.) Vol. 40, 181–211 (Academic Press, 1991).

  • Díaz-Muñoz, S. L., Sanjuán, R. & West, S. A. Sociovirology: conflict, cooperation, and communication among viruses. Cell Host Microbe 22, 437–441 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • West, S. A., Fisher, R. M., Gardner, A. & Kiers, E. T. Major evolutionary transitions in individuality. Proc. Natl Acad. Sci. USA 112, 10112–10119 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Queller, D. C. & Strassmann, J. E. Beyond society: the evolution of organismality. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 3143–3155 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanjuán, R. The social life of viruses. Annu. Rev. Virol. 8, 183–199 (2021).

  • Flint, J., Racaniello, V. R., Rall, G. F. & Skalka, A. M. Principles of Virology (American Society of Microbiology, 2015).

  • Novak, J. E. & Kirkegaard, K. Coupling between genome translation and replication in an RNA virus. Genes Dev. 8, 1726–1737 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Alnaji, F. G. et al. Sequencing framework for the sensitive detection and precise mapping of defective interfering particle-associated deletions across influenza A and B viruses. J. Virol. 93, e00354-19 (2019).

  • Murphy, K. Janeway’s Immunobiology (Garland Science, 2011).

  • Domingo-Calap, P., Segredo-Otero, E., Durán-Moreno, M. & Sanjuán, R. Social evolution of innate immunity evasion in a virus. Nat. Microbiol. 1, https://doi.org/10.1038/s41564-019-0379-8 (2019).

  • Landsberger, M. et al. Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity. Cell 174, 908–916.e12 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Borges, A. L. et al. Bacteriophage cooperation suppresses CRISPR-Cas3 and Cas9 immunity. Cell 174, 917–925.e10 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Erez, Z. et al. Communication between viruses guides lysis–lysogeny decisions. Nature 541, 488–493 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, A. S. & Baltimore, D. Defective viral particles and viral disease processes. Nature 226, 325–327 (1970).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Simon, A. E., Roossinck, M. J. & Havelda, Z. Plant virus satellite and defective interfering RNAs: new paradigms for a new century. Annu. Rev. Phytopathol. 42, 415–437 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Frensing, T., Pflugmacher, A., Bachmann, M., Peschel, B. & Reichl, U. Impact of defective interfering particles on virus replication and antiviral host response in cell culture-based influenza vaccine production. Appl. Microbiol. Biotechnol. 98, 8999–9008 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Christie, G. E. & Dokland, T. Pirates of the caudovirales. Virology 434, 210–221 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Gnanasekaran, P. & Chakraborty, S. Biology of viral satellites and their role in pathogenesis. Curr. Opin. Virol. 33, 96–105 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Chevallereau, A. et al. Exploitation of the cooperative behaviors of anti-CRISPR phages. Cell Host Microbe 27, 189–198 (2020).

  • Kerr, B., Neuhauser, C., Bohannan, B. J. M. & Dean, A. M. Local migration promotes competitive restraint in a host–pathogen ‘tragedy of the commons’. Nature 442, 75 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Skums, P., Bunimovich, L. & Khudyakov, Y. Antigenic cooperation among intrahost HCV variants organized into a complex network of cross-immunoreactivity. Proc. Natl Acad. Sci. USA 112, 6653–6658 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geoghegan, J. L. & Holmes, E. C. Evolutionary virology at 40. Genetics 210, 1151–1162 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Turner, P. E. & Chao, L. Prisoner’s dilemma in an RNA virus. Nature 398, 441–443 (1999).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Dennehy, J. J. & Turner, P. E. Reduced fecundity is the cost of cheating in RNA virus 6. Proc. R. Soc. B Biol. Sci. 271, 2275–2282 (2004).

    CAS 

    Google Scholar 

  • Ross‐Gillespie, A., Gardner, A., West, S. A. & Griffin, A. S. Frequency dependence and cooperation: theory and a test with bacteria. Am. Nat. 170, 331–342 (2007).

    PubMed 

    Google Scholar 

  • Ghoul, M., West, S. A., Diggle, S. P. & Griffin, A. S. An experimental test of whether cheating is context dependent. J. Evol. Biol. 27, 551–556 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Jiricny, N. et al. Fitness correlates with the extent of cheating in a bacterium. J. Evol. Biol. 23, 738–747 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Pathak, K. B. & Nagy, P. D. Defective interfering RNAs: foes of viruses and friends of virologists. Viruses 1, 895–919 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • von Magnus, P. Studies on Interference in Experimental Influenza Vol. 1 (Almqvist & Wiksell, 1947).

  • Rezelj, V. V., Levi, L. I. & Vignuzzi, M. The defective component of viral populations. Curr. Opin. Virol. 33, 74–80 (2018).

    PubMed 

    Google Scholar 

  • Nee, S. & Maynard Smith, J. The evolutionary biology of molecular parasites. Parasitology 100, S5–S18 (1990).

    PubMed 

    Google Scholar 

  • Szathmáry, E. Co-operation and defection: playing the field in virus dynamics. J. Theor. Biol. 165, 341–356 (1993).

    ADS 
    PubMed 

    Google Scholar 

  • Brown, S. P. Collective action in an RNA virus. J. Evol. Biol. 14, 821–828 (2001).

    Google Scholar 

  • Chao, L. & Elena, S. F. Nonlinear trade-offs allow the cooperation game to evolve from Prisoner’s dilemma to snowdrift. Proc. R. Soc. B 284, 20170228 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rüdiger, D., Kupke, S. Y., Laske, T., Zmora, P. & Reichl, U. Multiscale modeling of influenza A virus replication in cell cultures predicts infection dynamics for highly different infection conditions. PLoS Comput. Biol. 15, e1006819 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holmes, E. C. The Evolution and Emergence of RNA Viruses (Oxford University Press, 2009).

  • Schröder, C. H., Fürst, B., Weise, K. & Gray, C. P. A study of interfering herpes simplex virus DNA preparations containing defective genomes of either class I or II and the identification of minimal requirements for interference. J. Gen. Virol. 65, 493–506 (1984).

    PubMed 

    Google Scholar 

  • Vogt, P. K. & Jackson, A. O. Satellites and Defective Viral RNAs (Springer, 1999).

  • Roossinck, M. J., Sleat, D. & Palukaitis, P. Satellite RNAs of plant viruses: structures and biological effects. Microbiol. Rev. 56, 265–279 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qiu, W. & Scholthof, K.-B. G. Defective interfering RNAs of a satellite virus. J. Virol. 75, 5429–5432 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang, W.-S. et al. Novel hepatitis D-like agents in vertebrates and invertebrates. Virus Evol. 5, vez021 (2019).

  • Penadés, J. R. & Christie, G. E. The phage-inducible chromosomal islands: a family of highly evolved molecular parasites. Annu. Rev. Virol. 2, 181–201 (2015).

    PubMed 

    Google Scholar 

  • Mougari, S., Sahmi-Bounsiar, D., Levasseur, A., Colson, P. & La Scola, B. Virophages of giant. Viruses 11, 733 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • Parks, W. P., Casazza, A. M., Alcott, J. & Melnick, J. L. Adeno-associated satellite virus interference with the replication of its helper adenovirus. J. Exp. Med. 127, 91–108 (1968).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McKitterick, A. C. & Seed, K. D. Anti-phage islands force their target phage to directly mediate island excision and spread. Nat. Commun. 9, 2348 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • La Scola, B. et al. A giant virus in amoebae. Science 299, 2033–2033 (2003).

    PubMed 

    Google Scholar 

  • La Scola, B. et al. The virophage as a unique parasite of the giant mimivirus. Nature 455, 100–104 (2008).

    ADS 
    PubMed 

    Google Scholar 

  • Zhou, J. et al. Diversity of virophages in metagenomic data sets. J. Virol. 87, 4225–4236 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paez-Espino, D. et al. Diversity, evolution, and classification of virophages uncovered through global metagenomics. Microbiome 7, 157 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Duponchel, S. & Fischer, M. G. Viva lavidaviruses! Five features of virophages that parasitize giant DNA viruses. PLoS Pathog. 15, e1007592 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Leeks, A. & West, S. A. Altruism in a virus. Nat. Microbiol. 4, 910–911 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Yuen, C.-K. et al. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg. Microbes Infect. 0, 1–29 (2020).

    Google Scholar 

  • Russell, A. B., Elshina, E., Kowalsky, J. R., Velthuis, A. J. W. te & Bloom, J. D. Single-cell virus sequencing of influenza infections that trigger innate immunity. J. Virol. https://doi.org/10.1128/JVI.00500-19 (2019).

  • Wolf, Y. I. et al. Origins and evolution of the global RNA virome. mBio 9, e02329-18 (2018).

  • Wolf, Y. I. et al. Doubling of the known set of RNA viruses by metagenomic analysis of an aquatic virome. Nat. Microbiol. 5, 1262–1270 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y.-Z., Shi, M. & Holmes, E. C. Using metagenomics to characterize an expanding virosphere. Cell 172, 1168–1172 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Shi, M. et al. Redefining the invertebrate RNA virosphere. Nature https://doi.org/10.1038/nature20167 (2016).

  • Schmerer, M., Molineux, I. J. & Bull, J. J. Synergy as a rationale for phage therapy using phage cocktails. PeerJ 2, e590 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bondy-Denomy, J. et al. Prophages mediate defense against phage infection through diverse mechanisms. ISME J. 10, 2854–2866 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Leeks, A., Sanjuán, R. & West, S. A. The evolution of collective infectious units in viruses. Virus Res. 265, 94–101 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andreu-Moreno, I. & Sanjuán, R. Collective viral spread mediated by virion aggregates promotes the evolution of defective interfering particles. mBio 11, e02156-19 (2020).

  • Gallagher, M. E., Brooke, C. B., Ke, R. & Koelle, K. Causes and consequences of spatial within-host viral spread. Viruses 10, 627 (2018).

    CAS 
    PubMed Central 

    Google Scholar 

  • Tramper, J. & Vlak, J. M. Some engineering and economic aspects of continuous cultivation of insect cells for the production of baculoviruses. Ann. N. Y. Acad. Sci. 469, 279–288 (1986).

    ADS 

    Google Scholar 

  • Tapia, F. et al. Continuous influenza virus production in a tubular bioreactor system provides stable titers and avoids the “von Magnus effect”. PLoS ONE 14, e0224317 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frensing, T. Defective interfering viruses and their impact on vaccines and viral vectors. Biotechnol. J. 10, 681–689 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Brooke, C. B., Ince, W. L., Wei, J., Bennink, J. R. & Yewdell, J. W. Influenza A virus nucleoprotein selectively decreases neuraminidase gene-segment packaging while enhancing viral fitness and transmissibility. Proc. Natl Acad. Sci. USA 111, 16854–16859 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gutiérrez, S. et al. Dynamics of the multiplicity of cellular infection in a plant virus. PLoS Pathog. 6, e1001113 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Díaz-Muñoz, S. L. Viral coinfection is shaped by host ecology and virus–virus interactions across diverse microbial taxa and environments. Virus Evol. 3, vex011 (2017).

  • Shriner, D., Rodrigo, A. G., Nickle, D. C. & Mullins, J. I. Pervasive genomic recombination of HIV-1 in vivo. Genetics 167, 1573–1583 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jacobs, N. T. et al. Incomplete influenza A virus genomes occur frequently but are readily complemented during localized viral spread. Nat. Commun. 10, 1–17 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Saira, K. et al. Sequence analysis of in vivo defective interfering-like RNA of influenza A H1N1 pandemic virus. J. Virol. 87, 8064–8074 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, D. et al. Defective interfering viral particles in acute dengue infections. PLoS ONE 6, e19447 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gelbart, M. et al. Drivers of within-host genetic diversity in acute infections of viruses. PLOS Pathogens. 16, e1009029 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lowen, A. C. It’s in the mix: Reassortment of segmented viral genomes. PLoS Pathog. 14, e1007200 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin, M. A., Kaul, D., Tan, G. S., Woods, C. W. & Koelle, K. The dynamics of influenza A H3N2 defective viral genomes from a human challenge study. Preprint at bioRxiv https://doi.org/10.1101/814673 (2019).

  • Levi, L. I. et al. Defective viral genomes from chikungunya virus are broad-spectrum antivirals and prevent virus dissemination in mosquitoes. PLoS Pathog. 17, e1009110 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bull, R. A. et al. Sequential bottlenecks drive viral evolution in early acute hepatitis C virus infection. PLoS Pathog. 7, e1002243 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin, M. A. & Koelle, K. Reanalysis of deep-sequencing data from Austria points towards a small SARS- COV-2 transmission bottleneck on the order of one to three virions. Preprint at bioRxiv https://doi.org/10.1101/2021.02.22.432096 (2021).

  • McCrone, J. T. & Lauring, A. S. Genetic bottlenecks in intraspecies virus transmission. Curr. Opin. Virol. 28, 20–25 (2018).

    PubMed 

    Google Scholar 

  • Zwart, M. P. & Elena, S. F. Matters of size: genetic bottlenecks in virus infection and their potential impact on evolution. Annu. Rev. Virol. 2, 161–179 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Keele, B. F. et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc. Natl Acad. Sci. USA 105, 7552–7557 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Varble, A. et al. Influenza A virus transmission bottlenecks are defined by infection route and recipient host. Cell Host Microbe 16, 691–700 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sexton, N. R. et al. Genome number and size polymorphism in zika virus infectious units. J. Virol. 95, e00787-20 (2021).

  • Sanjuán, R. Collective infectious units in viruses. Trends Microbiol 25, 402–412 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Potter, J. N., Faulkner, P. & MacKinnon, E. A. Strain selection during serial passage of Trichoplusia in nuclear polyhedrosis virus. J. Virol. 18, 1040–1050 (1976).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andersen, S. B. et al. Privatisation rescues function following loss of cooperation. eLife 7, e38594 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Butaitė, E., Baumgartner, M., Wyder, S. & Kümmerli, R. Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities. Nat. Commun. 8, 1–12 (2017).

    ADS 

    Google Scholar 

  • Ostrowski, E. A. Enforcing cooperation in the social amoebae. Curr. Biol. 29, R474–R484 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • DePolo, N. J., Giachetti, C. & Holland, J. J. Continuing coevolution of virus and defective interfering particles and of viral genome sequences during undiluted passages: virus mutants exhibiting nearly complete resistance to formerly dominant defective interfering particles. J. Virol. 61, 454–464 (1987).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doceul, V., Hollinshead, M., van der Linden, L. & Smith, G. L. Repulsion of superinfecting virions: a mechanism for rapid virus spread. Science 327, 873–876 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Folimonova, S. Y. Superinfection exclusion is an active virus-controlled function that requires a specific viral protein. J. Virol. 86, 5554–5561 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanjuán, R., Nebot, M. R., Chirico, N., Mansky, L. M. & Belshaw, R. Viral mutation rates. J. Virol. 84, 9733–9748 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Spiegelman, S., Haruna, I., Holland, I. B., Beaudreau, G. & Mills, D. The synthesis of a self-propagating and infectious nucleic acid with a purified enzyme. Proc. Natl Acad. Sci. USA 54, 919–927 (1965).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lythgoe, K. A., Gardner, A., Pybus, O. G. & Grove, J. Short-sighted virus evolution and a germline hypothesis for chronic viral infections. Trends Microbiol 25, 336–348 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elena, S. F. & Sanjuán, R. Virus evolution: insights from an experimental approach. Annu. Rev. Ecol. Evol. Syst. 38, 27–52 (2007).

    Google Scholar 

  • Giri, L., Feiss, M. G., Bonning, B. C. & Murhammer, D. W. Production of baculovirus defective interfering particles during serial passage is delayed by removing transposon target sites in fp25k. J. Gen. Virol. 93, 389–399 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • dos Santos, M., Ghoul, M. & West, S. A. Pleiotropy, cooperation, and the social evolution of genetic architecture. PLoS Biol. 16, e2006671 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pfaller, C. K. et al. Measles virus defective interfering RNAs are generated frequently and early in the absence of C protein and can be destabilized by adenosine deaminase acting on RNA-1-Like hypermutations. J. Virol. 89, 7735–7747 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jaworski, E. & Routh, A. Parallel ClickSeq and Nanopore sequencing elucidates the rapid evolution of defective-interfering RNAs in Flock House virus. PLoS Pathog. 13, e1006365 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gardner, A. & Grafen, A. Capturing the superorganism: a formal theory of group adaptation. J. Evol. Biol. 22, 659–671 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Andino, R. & Domingo, E. Viral quasispecies. Virology 479–480, 46–51 (2015).

    PubMed 

    Google Scholar 

  • Vasilijevic, J. et al. Reduced accumulation of defective viral genomes contributes to severe outcome in influenza virus infected patients. PLoS Pathog. 13, e1006650 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong, X. et al. Variation around the dominant viral genome sequence contributes to viral load and outcome in patients with Ebola virus disease. Genome Biol. 21, 238 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Valesano, A. L. et al. Temporal dynamics of SARS-CoV-2 mutation accumulation within and across infected hosts. PLOS Pathogens. 17 e1009499 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lauring, A. S. Within-host viral diversity: a window into viral evolution. Annu. Rev. Virol. 7, 63–81 (2020).

  • Metzger, V. T., Lloyd-Smith, J. O. & Weinberger, L. S. Autonomous targeting of infectious superspreaders using engineered transmissible therapies. PLoS Comput. Biol. 7, e1002015 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dimmock, N. J. & Easton, A. J. Defective interfering influenza virus RNAs: time to reevaluate their clinical potential as broad-spectrum antivirals? J. Virol. 88, 5217–5227 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gu, S. et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat. Microbiol. 1–9, https://doi.org/10.1038/s41564-020-0719-8 (2020).

  • Brown, S. P., West, S. A., Diggle, S. P. & Griffin, A. S. Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies. Philos. Trans. R. Soc. B Biol. Sci. 364, 3157–3168 (2009).

    Google Scholar 

  • Zhao, H. et al. Dual-functional peptide with defective interfering genes effectively protects mice against avian and seasonal influenza. Nat. Commun. 9, 2358 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Noble, S. & Dimmock, N. J. Defective interfering type A equine influenza virus (H3N8) protects mice from morbidity and mortality caused by homologous and heterologous subtypes of influenza A virus. J. Gen. Virol. 75, 3485–3491 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Weinberger, L. S. & Notton, T. J. Methods and compositions for generating a deletion library and for identifying a defective interfering particle (DIP). United States Patent Application 20210024921. (2021).

  • Johnson, D. M., Cubitt, B., Pfeffer, T. L., de la Torre, J. C. & Lukashevich, I. S. Lassa virus vaccine candidate ML29 generates truncated viral RNAs which contribute to interfering activity and attenuation. Viruses 13, 214 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rand, U. et al. Antiviral activity of influenza a virus defective interfering particles against SARS-CoV-2 replication in vitro through stimulation of innate immunity. Cells. 10, 1756 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yao, S., Narayanan, A., Majowicz, S. A., Jose, J. & Archetti, M. A synthetic defective interfering SARS-CoV-2. PeerJ 9, e11686 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. Influenza research database: an integrated bioinformatics resource for influenza virus research. Nucleic Acids Res. 45, D466–D474 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Benson, D. A. et al. GenBank. Nucleic Acids Res. 46, D41–D47 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Grubaugh, N. D. et al. Tracking virus outbreaks in the twenty-first century. Nat. Microbiol. 4, 10–19 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Olsen, P. H. English: Reed Warbler Feeding a Common Cuckoo Chick in a Nest. Brood Parasitism. (Wikimedia Commons, 2007).

  • Baltes, A., Akpinar, F., Inankur, B. & Yin, J. Inhibition of infection spread by co-transmitted defective interfering particles. PLoS ONE 12, e0184029 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • He, L. et al. A conserved RNA structure is essential for a satellite RNA-mediated inhibition of helper virus accumulation. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz564 (2019).

  • Grafen, A. A geometric view of relatedness. Oxf. Surv. Evol. Biol. 2, 28–89 (1985).

    Google Scholar 

  • Cole, C. N., Smoler, D., Wimmer, E. & Baltimore, D. Defective interfering particles of poliovirus I. Isolation and physical properties. J. Virol. 7, 478–485 (1971).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, A. S. & Wagner, R. R. Defective T particles of vesicular stomatitis virus: II. Biologic role in homologous interference. Virology 30, 173–181 (1966).

    CAS 
    PubMed 

    Google Scholar 

  • Kawai, A. & Matsumoto, S. Interfering and noninterfering defective particles generated by a rabies small plaque variant virus. Virology 76, 60–71 (1977).

    CAS 
    PubMed 

    Google Scholar 

  • Ram, G. et al. Staphylococcal pathogenicity island interference with helper phage reproduction is a paradigm of molecular parasitism. Proc. Natl Acad. Sci. USA 109, 16300–16305 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andreu-Moreno, I., Bou, J.-V. & Sanjuán, R. Cooperative nature of viral replication. Sci. Adv. 6, eabd4942 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cole, C. N. & Baltimore, D. Defective interfering particles of poliovirus: II. Nature of the defect. J. Mol. Biol. 76, 325–343 (1973).

    CAS 
    PubMed 

    Google Scholar 

  • Cole, C. N. & Baltimore, D. Defective interfering particles of poliovirus: III. Interference and enrichment. J. Mol. Biol. 76, 345–361 (1973).

    CAS 
    PubMed 

    Google Scholar 

  • Song, Y., Paul, A. V. & Wimmer, E. Evolution of poliovirus defective interfering particles expressing gaussia luciferase. J. Virol. 86, 1999–2010 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cole, C. N. & Baltimore, D. Defective interfering particles of poliovirus IV. Mechanisms of enrichment. J. Virol. 12, 1414–1426 (1973).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar